k8s-HPA

今天来讲一下k8s中pod是如何动态增加或缩减pod副本数,平常我们指定一个pod的副本数都是在deployment中replicas值来固化副本数,但是如果突然一段时间业务访问量加大,pod的资源使用率变高或者撑爆服务会导致pod挂掉,当然你也可以通过压测来判断你这套系统的最大处理能力,经过压测后服务最大处理能力后在增加几个副本数,但是增加这几个副本数是一个资源的浪费,因此我们可以使用HPA动态的根据pod的使用资源状态来扩容或者缩容,比如HPA发现某个监控的deployment的cpu使用率大于HPA所设定的值,就会调用deployment增加一个副本数,如果小于所设定的值就会减少副本数

工作流程

通过Metrices Server组件完成数据采集,然后将采集后的数据通过API(Aggregated API,汇总API),例如metrics.k8s.io、custom.metrics.k8s.io、external.metrics.k8s.io,发送给HPA控制器进行查询,如果超过或者低于设定的值HPA会发送指令到Deployment控制器开始缩扩容pod

工作流程图
如何配置伸缩pod

首先需要部署Metrices Server

本次下载为0.4.4版本https://github.com/kubernetes-sigs/metrics-server/releases

apiVersion: v1
kind: ServiceAccount
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
    rbac.authorization.k8s.io/aggregate-to-admin: "true"
    rbac.authorization.k8s.io/aggregate-to-edit: "true"
    rbac.authorization.k8s.io/aggregate-to-view: "true"
  name: system:aggregated-metrics-reader
rules:
- apiGroups:
  - metrics.k8s.io
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
rules:
- apiGroups:
  - ""
  resources:
  - pods
  - nodes
  - nodes/stats
  - namespaces
  - configmaps
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server-auth-reader
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server:system:auth-delegator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:auth-delegator
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:metrics-server
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: v1
kind: Service
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  ports:
  - name: https
    port: 443
    protocol: TCP
    targetPort: https
  selector:
    k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  selector:
    matchLabels:
      k8s-app: metrics-server
  strategy:
    rollingUpdate:
      maxUnavailable: 0
  template:
    metadata:
      labels:
        k8s-app: metrics-server
    spec:
      containers:
      - args:
        - --cert-dir=/tmp
        - --secure-port=4443
        - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
        - --kubelet-use-node-status-port
        image: k8s.gcr.io/metrics-server/metrics-server:v0.4.4
        imagePullPolicy: IfNotPresent
        livenessProbe:
          failureThreshold: 3
          httpGet:
            path: /livez
            port: https
            scheme: HTTPS
          periodSeconds: 10
        name: metrics-server
        ports:
        - containerPort: 4443
          name: https
          protocol: TCP
        readinessProbe:
          failureThreshold: 3
          httpGet:
            path: /readyz
            port: https
            scheme: HTTPS
          periodSeconds: 10
        securityContext:
          readOnlyRootFilesystem: true
          runAsNonRoot: true
          runAsUser: 1000
        volumeMounts:
        - mountPath: /tmp
          name: tmp-dir
      nodeSelector:
        kubernetes.io/os: linux
      priorityClassName: system-cluster-critical
      serviceAccountName: metrics-server
      volumes:
      - emptyDir: {}
        name: tmp-dir
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
  labels:
    k8s-app: metrics-server
  name: v1beta1.metrics.k8s.io
spec:
  group: metrics.k8s.io
  groupPriorityMinimum: 100
  insecureSkipTLSVerify: true
  service:
    name: metrics-server
    namespace: kube-system
  version: v1beta1
  versionPriority: 100
部署后会创建metrics-server的pod

验证Metrices Server 是否生效

kubectl top node  #可以看到node节点的资源使用率说明成功

配置controller-manager参数以下几点 注:根据公司环境来盘点是否配置

# kube-controller-manager --help | grep horizontal-pod-autoscaler-sync-period 
     --horizontal-pod-autoscaler-sync-period      duration The period for syncing the number of pods in horizontal pod autoscaler. (default 15s) 
     #定义pod数量水平伸缩的间隔周期,默认15秒 
     --horizontal-pod-autoscaler-cpu-initialization-period         duration The period after pod start when CPU samples might be skipped. (default 5m0s) 
     #用于设置 pod 的初始化时间, 在此时间内的 pod,CPU 资源指标将不会被采纳,默认为5分钟
     --horizontal-pod-autoscaler-initial-readiness-delay     duration The period after pod start during which readiness changes will be treated as initial readiness. (default 30s) 
     #用于设置 pod 准备时间, 在此时间内的 pod 统统被认为未就绪及不采集数据,默认为30秒

根据环境更改service文件

# vim /etc/systemd/system/kube-controller-manager.service  写入service文件中
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/GoogleCloudPlatform/kubernetes

[Service]
ExecStart=/usr/bin/kube-controller-manager \
  --bind-address=10.0.0.101 \
  --allocate-node-cidrs=true \
  --cluster-cidr=10.200.0.0/16 \
  --cluster-name=kubernetes \
  --cluster-signing-cert-file=/etc/kubernetes/ssl/ca.pem \
  --cluster-signing-key-file=/etc/kubernetes/ssl/ca-key.pem \
  --kubeconfig=/etc/kubernetes/kube-controller-manager.kubeconfig \
  --leader-elect=true \
  --node-cidr-mask-size=24 \
  --root-ca-file=/etc/kubernetes/ssl/ca.pem \
  --service-account-private-key-file=/etc/kubernetes/ssl/ca-key.pem \
  --service-cluster-ip-range=10.100.0.0/16 \
  --use-service-account-credentials=true \
  --horizontal-pod-autoscaler-use-rest-clients=true \ #是否使用其他客户端数据
  --horizontal-pod-autoscaler-sync-period=10s \
  --v=2
Restart=always
RestartSec=5

[Install]
WantedBy=multi-user.target

重启controller-manager 验证以上参数是否生效

1、手动扩容

可以根据业务的高峰期来手动进行扩容,比如早上八点访问业务量高,那就写一个定时任务进行扩容
kubectl scale deployment/deploymentname --replicas=2 -nlhl   #把副本数调整为2
kubectl autoscale deployment/bhb-tomcat --min=2 --max=5 --cpu-percent=80 -nlhl #副本数最大为5 最小为2 cpu超过80%

2、编写yaml文件进行自动扩容

#apiVersion: autoscaling/v2beta1
apiVersion: autoscaling/v1 
kind: HorizontalPodAutoscaler
metadata:
  namespace: lhl         
  name: tomcat-hpa        #hpa的名称
  labels:
    app: tomcat-app1
    version: v2beta1
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    #apiVersion: extensions/v1beta1 
    kind: Deployment                      #通过deployment来管理
    name: bhb-tomcat                      #管理那个deployment的名称 
  minReplicas: 2     #最小副本数
  maxReplicas: 20    #最大副本数
  targetCPUUtilizationPercentage: 60    #定义扩容CPU的指标
  #metrics:   #早期写法
  #- type: Resource
  #  resource:
  #    name: cpu
  #    targetAverageUtilization: 60
  #- type: Resource
  #  resource:
  #    name: memory